
Off-Line Type Thickness Measurement System

Introduction to ST Series

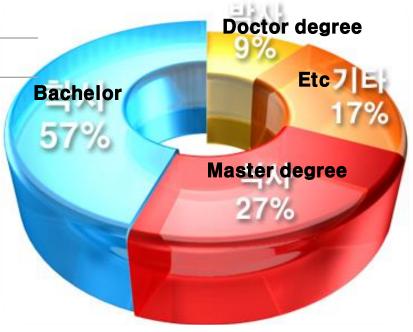
- 1. K-MAC is...
- 2. Principle of Thickness Measurement System
- 3. Comparison with other methods
- 4. Overview of Thickness Measurement System
- 5. Verification of System
- 5. Conclusion
- 6. Patents

We will be your best partner providing total solutions with nano-measurement and analysis Technology.

Analysis & Measurement System based on Optical Technology

Basic Application Market	NT+BT+IT Convergence Area
Semiconductor / FPD	U - Healthcare
Nano / IT Materials	U – Monitoring Device
Biotechnology	(Safety, Pollution, Food)
Education / Scientific Instrument	Mini Detector for Consumers

K-MAC comparative power: more 10 year experience of Thickness Measurement

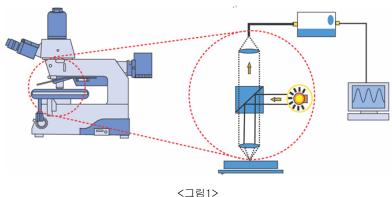


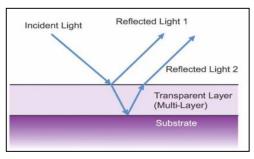

Employee

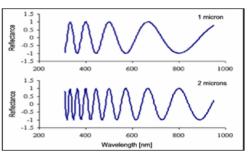
285 staffs (KOR)

2017. 현재

Production Eng. Center	177
R&D Center	84
K-MAC(Kunshan) R&D Corp.	25
Taiwan Branch	9







••• Principle of Thickness Measurement System

Optical Reflectance (SR) Principle

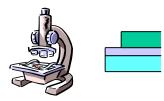
<그림2>

<그림3>

❖ 반사에 의한 비접촉식 두께측정원리:

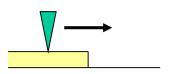
박막에 입사된 빛은 일부는 박막 표면에서 반사(1)되고, 일부는 박막으로 투과한 후 박막과 기판 경계면에서 반사(2)되어 두 반사광이 서로 간섭현상을 보여<그림2>, 파장에 따라 보강 및 상쇄간섭을 하게 된다<그림3>.

간섭하여 얻어진 반사도는 박막과 기판의 굴절률과 박막의 두 께에 따른 함수(R{n,k,T})로 표현되며 수학적 모델을 이용하여 박막의 굴절률과 두께를 계산할 수 있다.

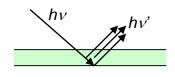

$$\mathbf{R} = \frac{\text{r12} + \text{r23 exp(-j2}\beta)}{1 + \text{r12r23 exp(-j2}\beta)}$$
 where, $\beta = 2\pi (d\hbar)\tilde{N}2$
$$\text{r12} = (\tilde{N}2 - \tilde{N}1)/(\tilde{N}2 + \tilde{N}1)$$

$$\text{r23} = (\tilde{N}3 - \tilde{N}2)/(\tilde{N}3 + \tilde{N}2)$$

Comparison with other methods


Comparison with other company

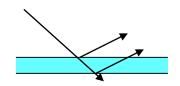
Microscopy


- Optical microscope, SEM, TEM
- Cross sectional image of sample with high magnification
- Destructive, special sample preparation, micro structure
- Any kinds of films, multi structure

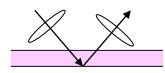
Surface Profiler

- Use a sharp tip
- Mechanical step difference according to surface profile
- Contact, Destructive, Sample preparation
- Any kinds of films

X-ray Fluorescence


- Use an X-ray
- Characterized X-ray Fluorescence intensity of film composition
- Non contact, Non destructive
- Metal films

Comparison with other methods


Comparison with other company

Optical Reflectance

- Use Visible, Ultra Violet, Infrared lights
- Interference of lights reflected from surface and film interfaces
- Non contact, Non destructive, Able to focus on small spot
- Dielectrics, Transparent films

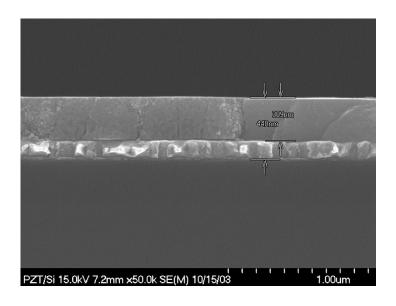
Ellipsometer

- Use a polarized light
- Optical polarity rotation during transition into the film matrix
- Non contact, Non destructive
- Dielectrics, Transparent films

Other Methods

- Phonon emission from crystal lattice: Metal films
- RS(Sheet Resistance) Measurement: Metal films
- C-V Plotter: Dielectric films
- FTIR: Epitaxial layer
- Photo acoustic Metrology: Metal and Transparent films

•••• Comparison with other methods


■ Comparison with other company

Method Property		Optical Reflectance (SR)	Ellipsometer (SE)	Surface Profiler
Non-Des	structive	Yes	Yes	No
Micro	Area	Yes	No	No
Pattern	Wafer	Possible(4mm)	Impossible	Impossible
Thickness	Thick(μm)	Possible	Periodic Ambiguity	Possible
Range	Thin(Å)	Possible	Possible	Possible
Measurin	Measuring Speed		> ~ min	> ~ min
Throughput		High	Low	Very low
Metal Film		No	No	Yes
N, K Measurement		Yes	Yes	No
Sample Preparation		Easy	Easy	Difficult
Convenience		Good	Bad	Bad
Price		Medium	High	Medium

Comparison with other methods

SEM vs K-MAC

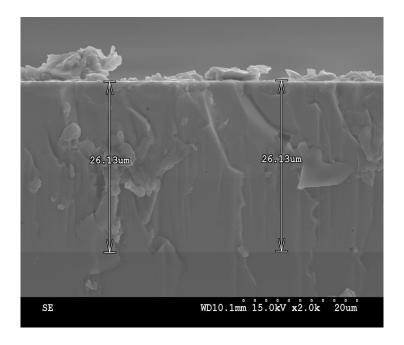
100 80 40 40 400 450 500 550 600 650 700 750 800 Wavelength [nm]

Measured

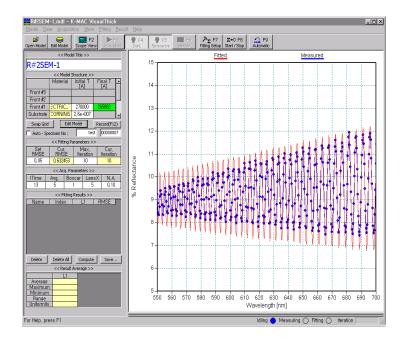
Fitted

SEM image

PZT: 309nm, Pt: 131nm


KMAC Result

PZT: 3073.58Å, Pt: X


••• Comparison with other methods

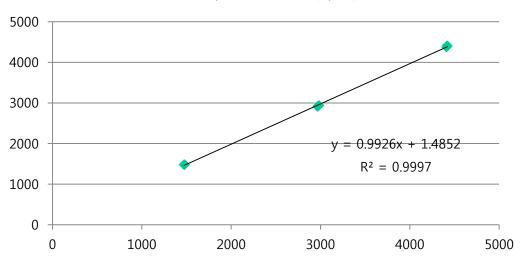
SEM vs K-MAC

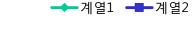
SEM image

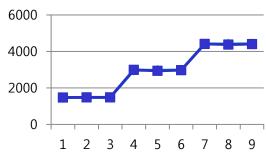
MgO: 26.13um

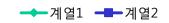
KMAC Result

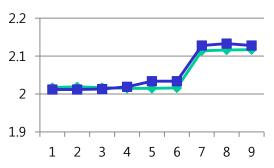
MgO: 26.588um


Comparison with other methods

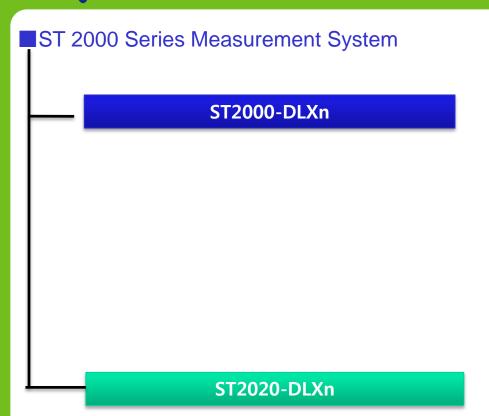

Comparison with other methods


SiNx	SRM(I	KRISS)	SE(K	RISS)	SR(KI	MAC)	Diffe	rence
SIIVX	THK	n	THK	n	THK	n	ΔΤΗΚ	Δn
			1473	2.017	1473	2.012	0	0.005
1400	1473	2.018	1473	2.019	1482	2.012	9	0.007
			1479	2.017	1482	2.013	3	0.004
			2966	2.015	2992	2.019	26	0.004
3000	-	-	2972	2.015	2941	2.034	31	0.019
			2982	2.016	2974	2.034	8	0.018
			4413	2.114	4408	2.128	5	0.014
4400	4411	2.114	4410	2.116	4376	2.133	34	0.017
			4420	2.117	4407	2.128	13	0.011


(unit: Å)



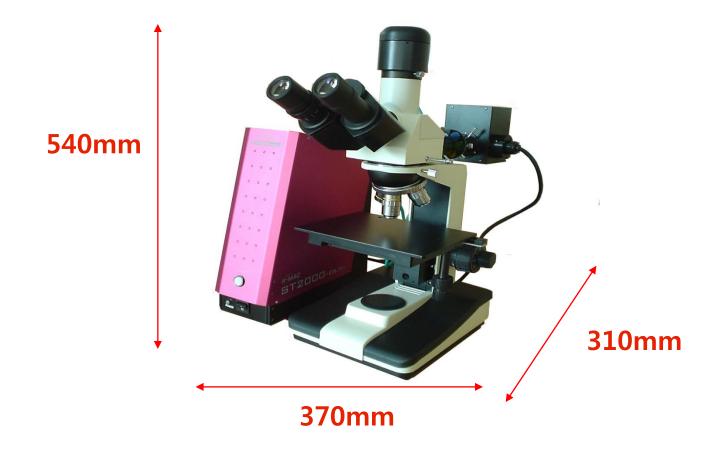
SE & SR correlation value $R^2=99.9\%$ (THK)

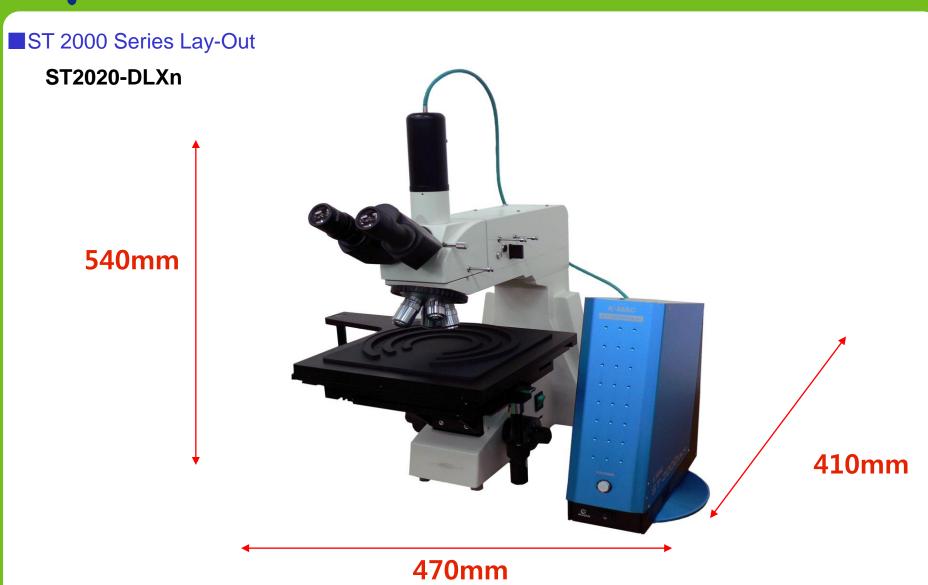

Comparison with other methods

Comparison with other methods

Item	Ellipsometry	Reflectometry	Comments
input	Δ, Ψ	R(%)	Polarization & Reflection
output	n,k,T	n,k,T	same
Reference	-	Si wafer	incident light
Theory	$E(z, t) = E_0 \sin(-\frac{2\pi}{\lambda}(z - vt) + \xi)$		Electromagnetic wave
Optical Data Analysis	$MSE = \frac{1}{N-M} \sum_{i=1}^{N} (\frac{y_i - y(\widehat{x}, \widehat{a})}{\sigma_i})$		Regression analysis methods

- 1. SE(Spectroscopic Ellipsometry) & SR(Spectroscopic Reflectometry)의 RI 차이 Δn < 0.05 정도의 차이를 갖고 있음.
- 2. SE는 $delta(\Delta)$ 와 $psi(\Psi)$ 두 개의 측정데이터를 이용하여 n&k, THK를 분석하므로 SR보다는 다소 정확한 면이 있음.
- 3. SR은 시료의 절대 반사도(두께와 굴절률의 정보를 포함)를 측정하여 n&k, THK를 부석 함.
- 4. 일반적으로 SR의 사용이 SE보다 쉬운 것으로 알려져 있어 공정 모니터링용으로 많이 사용함.





■ST 2000 Series Lay-Out

ST2000-DLXn

Specification (Model: ST2000-DLXn)

Wavelength Range	400nm~800nm
------------------	-------------

Thickness Measurement Range $200\text{Å} \sim 35\mu\text{m}$

Lens Turret M5x, M10x

Measuring Spot Size 40μ m, 20μ m

of measurable layer 3

Size of sample stage 150mm x 120mm

X-Y-Z Mechanism Roller guide type

Travel Distance: 70mm x 50mm

Manual Focusing Module Coaxial coarse & fine focusing controls

Specification (Model: ST2020-DLXn)

Wavelength Range	400nm~800nm
------------------	-------------

Thickness Measurement Range $200\text{Å} \sim 35\mu\text{m}$

Lens Turret M5x, M10x

Measuring Spot Size 40μ m, 20μ m

of measurable layer 3

Size of sample stage 200mm x 200mm

X-Y-Z Mechanism

Roller guide type

Travel Distance: 200mm x 200mm

Manual Focusing Module Coaxial coarse & fine focusing controls

Option Parts (ST2000 Series)

SRM (Standard Reference Sample) **Calibration Sample**

Material Structure: SiO2 on Si 1000Å, 2000Å, 5000Å, 10000Å

Optical Lens M50x (Spot size: 4 μ m)

High Performance Digital Processing CCD Camera

Picolo Capture Board

Image: 1/2" Interline Transfer CCD

Transmittance Function Usable Wavelength: 420nm~730nm

Repeatability: $\pm 0.5\%$ at 550nm

Measuring Point: 1 point (Position: Center of Stage)

■ST 4000-DLX Lay-Out

Specification (Model: ST4000-DLX)

Wavelength Range	400nm~800nm
	10011111 000111

Thickness Measurement Range $200\text{Å} \sim 35\mu\text{m}$

Lens Turret M5x, M10x

Measuring Spot Size 40μ m, 20μ m

of measurable layer 3

Size of sample stage 200mm x 200mm

X-Y-Z Mechanism

Roller guide type

Travel Distance: 200mm x 200mm

Manual Focusing Module Coaxial coarse & fine focusing controls

Option Parts (ST4000)

SRM (Standard Reference Sample)

Material Structure: SiO2 on Si 1000Å, 2000Å, 5000Å, 10000Å

Optical Lens

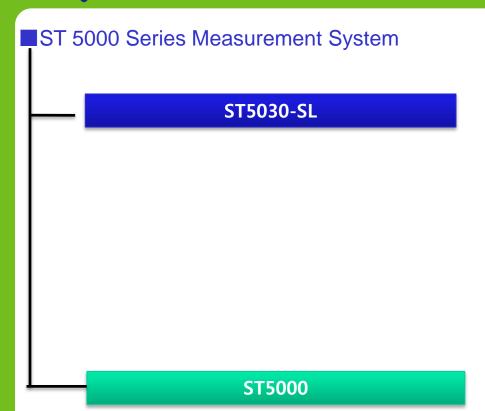
M50x (Spot size: 4 μ m)

CCD Camera

Number of pixels: 640x480 pixels

Pixel Size: 84x98um

Sample Stage


300mm x 300mm

Transmittance

Transmittance measurement range : 420nm ~ 780nm Repeatability (Precision): ± 0.5% at 420nm ~ 500nm

 $\pm 0.3\%$ at 500nm ~ 730 nm

■ST5030-SL Lay-Out

■ST5000 Lay-Out

Specification (Model: ST5030-SL)

Wavelength Range

Thickness Measurement Range

Lens Turret

Measuring Spot Size

of measurable layer

Size of sample stage

X-Y-axis Repeatability

Z-axis Repeatability

Motion Performance

400nm~800nm

Auto-mode ($100\text{Å} \sim 35\mu\text{m}$), Manual-mode ($\sim 50\mu\text{m}$)

M5x, M10x, M20x

 $40\mu \text{m}$, $20\mu \text{m}$, $10\mu \text{m}$

3

200mm x 200mm

 $\pm 5\mu$ m

 $\pm 4\mu$ m

X-Y motion

Travel range: 200mm x 200mm

Max. velocity: 50mm/s

Z motion

Travel range: 50mm Max. velocity: 50mm/s

••••

••• Overview of Thickness Measurement System

Specification (Model: ST5000)

Wavelength Range

Thickness Measurement Range

Lens Turret

Measuring Spot Size

of measurable layer

Size of sample stage

X-Y-axis Repeatability

Z-axis Repeatability

Motion Performance

400nm~900nm

100Å~50μm

M5x, M10x, M20x, M50x

 $40\mu \text{m}$, $20\mu \text{m}$, $10\mu \text{m}$, $4\mu \text{m}$

3

300mm x 300mm

 $\pm 2.5 \mu$ m

 $\pm 2\mu$ m

X-Y motion

Travel range: 300mm x 300mm

Max. velocity: 50mm/s

Z motion

Travel range: 50mm Max. velocity: 50mm/s

Option Parts (ST5000 Series)

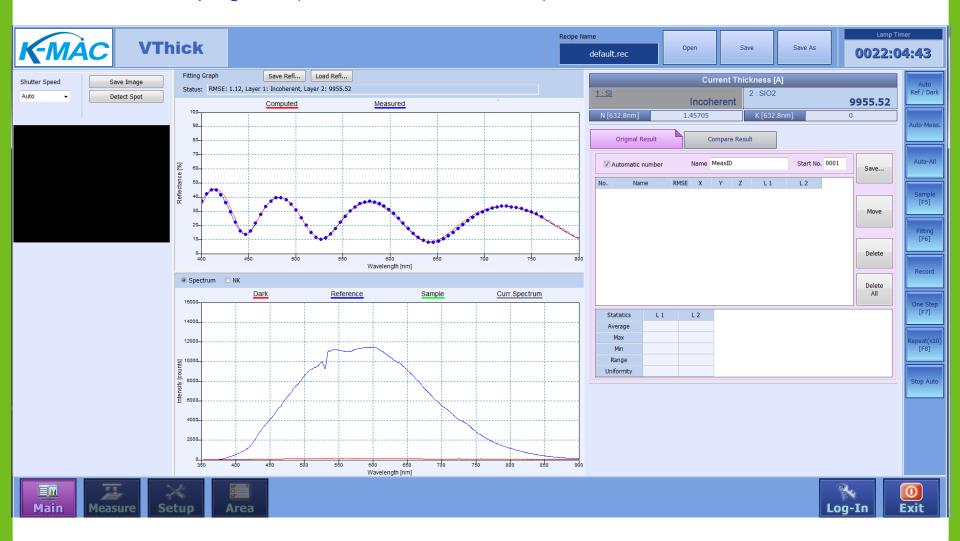
SRM (Standard Reference Sample) **Calibration Sample**

Material Structure: SiO2 on Si 1000Å, 2000Å, 5000Å, 10000Å

Optical Lens M50x (Spot size: 4 μ m)

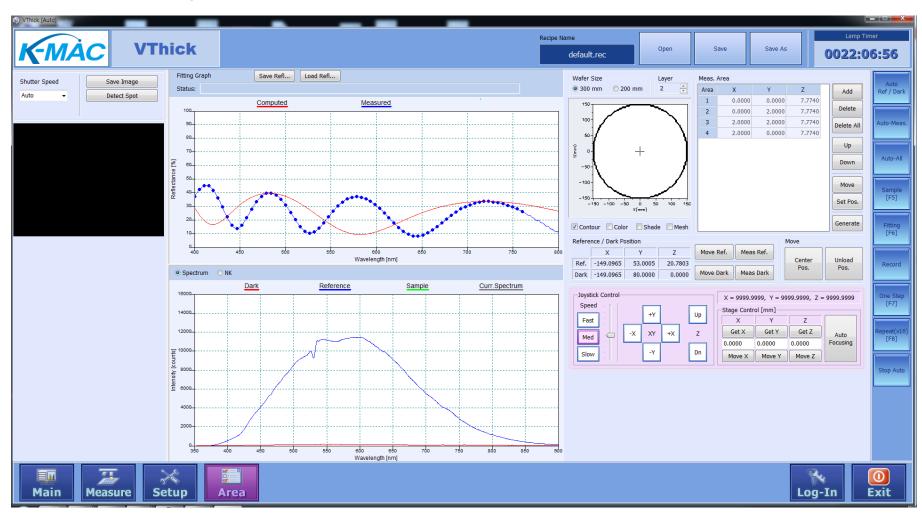
370mm x 470mm(About ST-5000) Sample Stage

Anti-vibration System with mechanical pneumatically **Anti-Vibration Table (Only ST5030-SL)**


controller

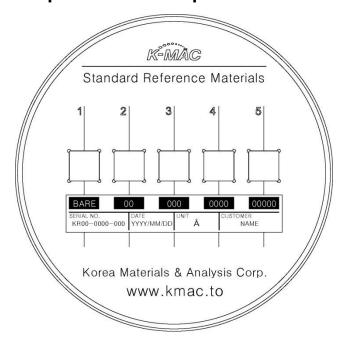
Auto Revolver Auto changing Lens

Wafer Aligner Automatically Wafer align


■ K-MAC Main programs (ST2000 & ST4000 Series)

Examples of Thickness Measurement Results

■ K-MAC Main programs (ST5000 Series)



••• Verification of System (장비 신뢰성 검증 방법)

Using Standard Reference Materials

*Prepare NIST Certificate sample or similar certificate sample (as K-MAC SRM)

*Prepare Stable Sample Structure

[K-MAC Certificate Sample Image]

[Measurement Results]

SiO2-NIST SRM (971 Å, 1995 Å)

unit: Å

Times	SiO2-NIST SRM (971 Å)	SiO2-NIST SRM (1995 A)
1	973.4	1992.9
2	973.1	1993.1
3	973.3	1993.4
4	973.5	1992.9
5	973.2	1993.1
6	973.3	1992.7
7	973.5	1992.8
8	973.6	1992.4
9	973.4	1992.5
10	973.5	1993.0
11	973.2	1992.7
12	973.7	1992.1
13	973.5	1992.5
14	973.2	1992.5
15	973.5	1992.6
16	973.4	1992.5
17	973.5	1991.9
18	973.4	1992.3
19	973.5	1992.3
20	973.4	1992.5
21	973.5	1992.2
22	973.5	1992.7
23	973.8	1992.2
24	973.8	1992.2
25	973.5	1992.1
26	973.6	1992.1
27	973.5	1991.9
28	974.0	1992.3
29	973.6	1992.3
30	973.5	1992.1
Average	973.5	1992.5
Max	974.0	1993.4
Min	973.1	1991.9
Range(Max-Min)	0.9	1.5
STD	0.19 2.5	0.38 -2.5
Accuracy		

Accuracy = Average measurement thickness - NIST SRM thickness

Lots of major customers

Questions?

ST5000 Series SHUBBLE

